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Abstract 10 

Landslides constitute a hazard to life and infrastructure, and their risk is mitigated primarily by 11 

reducing exposure. This requires information on landslide hazard at a scale that can enable informed 12 

decisions about how to respond to that hazard. Such information is often unavailable to, or not easily 13 

interpreted by, those who might need it most (e.g., householders, local government, and NGOs). To 14 

address this shortcoming, we develop simple rules to identify landslide hazard that are 15 

understandable, communicable, and memorable, and that require no prior knowledge, skills, or 16 

equipment to evaluate. We examine rules based on two common metrics of landslide hazard, local 17 

slope and upslope contributing area as a proxy for hillslope location, and we introduce and test two 18 

new metrics: the maximum angle to the skyline and the hazard area, defined as the upslope area 19 

with slope >39˚ that reaches a location without passing over a slope of <10˚. We then test the skill 20 

with which each metric can identify landslide hazard - the probability of being hit by a landslide - 21 

using inventories of landslides triggered by six recent earthquakes. We find that the maximum skyline 22 

angle and hazard area provide the most skilful predictions, and these results form the basis for two 23 

simple rules: ‘minimize your maximum angle to the skyline’ and ‘avoid steep (>10˚) channels with 24 

many steep (>39˚) areas that are upslope’. Because local slope alone is a skilful predictor of landslide 25 

hazard, we can formulate a third rule as ‘minimise local slope, especially on steep slopes and even 26 

at the expense of increasing upslope contributing area, but not at the expense of increasing skyline 27 

angle or hazard area’. Upslope contributing area, by contrast, has a weaker and more complex 28 

relationship to hazard than the other predictors. Our simple rules complement, but do not replace, 29 
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detailed site-specific investigation; they can be used for initial estimation of landslide hazard or guide 30 

decision-making in the absence of any other information. 31 

 32 

Keywords: coseismic, landslide, heuristic, hazard, exposure 33 

 34 

1. Introduction 35 

Landslides involve the downward movement of soil or rock under gravity, sometimes mixing with 36 

water or air to run out rapidly over long distances. Landslides have considerable destructive potential 37 

and constitute a major hazard to life and infrastructure (e.g. Alexander 2005; Petley, 2012; Klose et 38 

al., 2016; Mertens et al., 2016). 39 

Landslide risk can be mitigated by either reducing exposure - the likelihood that a particular person 40 

or structure is hit by a landslide - or by reducing the consequences of landslide impact. The latter is 41 

expensive for a building (Fell et al. 2005; Volkwein et al., 2011; Guillard-Gonçalves et al., 2016) and 42 

extremely difficult for a person (Petley, 2012, Kennedy et al., 2015). As a result, efforts in reducing 43 

landslide risk tend to focus on reducing exposure, primarily by siting infrastructure and assets (or 44 

choosing to spend time) in places of lower landslide hazard. These choices, however, require 45 

information on landslide hazard at a scale that can enable informed decisions about how to respond 46 

to that hazard. 47 

Quantitative landslide hazard information is commonly expressed as a relative weighting or 48 

probability of landslide occurrence in a given location and over a specified period of time. This is 49 

often communicated as a hazard map (Dransch et al., 2010). These maps can provide useful 50 

information to inform decisions such as siting infrastructure, allocating resources, designing 51 

countermeasures, or planning mitigation measures such as evacuation routes. There are, however, 52 

at least five limitations to reliance on hazard maps as the sole source of landslide hazard information. 53 

First, landslide hazard maps do not exist for all hazardous locations since their generation requires 54 

technical expertise and site-specific information that may not be available. Second, where maps do 55 

exist they may not be available to those that need them. Whether in physical or digital form, hazard 56 

maps are rarely held by the communities that live within their boundaries (Alexander, 2005; Mills and 57 

Curtis, 2008; Twigg et al., 2017). Third, where landslide hazard maps are available their resolution 58 
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may not be fine enough to address the questions that potential users will have. In everyday decisions, 59 

from where to build a house to which way to walk, metres matter for determining landslide exposure. 60 

Landslide hazard varies over very short length scales (tens of metres), but national- or even regional-61 

scale hazard maps cannot resolve hazard at those scales, and hazard maps at the appropriate scale 62 

would be extremely costly and time-consuming to produce over large areas. Fourth, landslide hazard 63 

maps are designed for technical users (such as engineers and planners) and thus can be difficult for 64 

non-technical users to interpret (Dransch et al., 2010). Hazard is often expressed in probabilistic 65 

terms, which are inherently difficult to communicate and understand (Thompson et al., 2015). The 66 

maps may also require particular equipment, such as a computer with appropriate software, or 67 

additional contextual information to enable clear visualisation or orient the user (Mills and Curtis, 68 

2008). Finally, landslide hazard maps may lack appropriate information for decision-making. For 69 

example, landslide hazard is commonly equated simply with the probability of landslide initiation at 70 

a given location, rather than the probability that that location is impacted by a landslide occurring 71 

there or somewhere upslope.  72 

In the absence of detailed hazard maps, how should we make decisions about siting infrastructure 73 

or spending time in landslide-prone areas? An alternative form of hazard information might be a set 74 

of general rules that can be memorised by anyone who might be exposed to landslide hazard, or by 75 

those charged with managing landslide risk, to be applied where no other information exists. A good 76 

general rule should: 1) be understandable, communicable and memorable; 2) require no prior 77 

knowledge, skills or equipment to evaluate; 3) be a skilful discriminant of hazard; and 4) be cast so 78 

that it does not increase exposure to another hazard. A good example of such a rule would be the 79 

instruction to minimise exposure to tsunami: “in case of earthquake, go to high ground or inland” 80 

(Atwater et al., 1999, p20). Research has shown that these types of simple rules are already to some 81 

extent implicitly coded into the decisions that people make (e.g. Gigerenzer, 2008), reflecting tacit 82 

knowledge of hazards (e.g. Shaw et al., 2008; Lebel, 2013; Twigg et al., 2017). Importantly, however, 83 

there are limits to this tacit knowledge (Briggs, 2005); in particular, the body of experience required 84 

to generate these rules is limited by both the infrequency of triggering events, such as earthquakes 85 

or large storms, and a focus on normal rather than unusual but not improbable events, introducing 86 

biases (McCammon, 2004; Kahneman and Klein, 2009). For example, while perennial rainfall-87 
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triggered landslides and the risks that they pose may be familiar to people in landslide-prone 88 

communities, landslides triggered by large earthquakes may fall outside of residents’ lived 89 

experience, and so will be more challenging to comprehend and account for in decision-making. If 90 

simple, memorable rules (fulfilling criteria one and two) could be derived from a large inventory of 91 

hazardous events, these biases might be reduced while maintaining the other benefits of a rule-92 

based approach (criteria three and four). Such a set of data-based rules could be used in the 93 

absence of, or in conjunction with, existing tools such as hazard maps and local knowledge, both to 94 

inform decisions and to inspire discussion amongst householders, local government, and non-95 

governmental organisations. Such knowledge is commonly in demand not only from technical users 96 

but from lay people (Twigg et al., 2017; Datta et al., 2018), especially because self-recovery after 97 

disasters is increasingly recognised as a critical mechanism of recovery (Twigg et al., 2017).  98 

Here we focus on rules that can be derived from the topography surrounding a given location and 99 

that differentiate exposure to coseismic landslide hazard on a scale of tens to hundreds of metres. 100 

Such rules are likely to be most useful for decisions before an earthquake about where to site 101 

infrastructure or spend time, and may be of less use for decisions during an earthquake when time 102 

is limited. We focus on earthquakes because landsliding is an important, but poorly understood, 103 

aspect of hazard in many recent continental earthquakes (Huang and Fan, 2013; Roback et al., 104 

2017). Some of our results may be transferrable to landslides caused by more frequent triggers, 105 

such as storms, and we consider this point in the discussion.  106 

We examine candidate rules based on our existing understanding of landslide mechanics to identify 107 

those that meet criteria one and two above. We then test the skill with which each candidate rule 108 

can identify landslide hazard using inventories of coseismic landslides from the recent Finisterre, 109 

Northridge, Chichi, Wenchuan, Haiti, and Gorkha earthquakes. Our goal is to determine the rule or 110 

rules that best fulfil the four criteria listed above, and that therefore provide the best combination of 111 

simplicity and skill in anticipating coseismic landslide impacts. We ask two key questions: (1) to what 112 

extent could observed landslide locations have been predicted by these simple rules alone, without 113 

recourse to more complex models; and (2) is there a single rule or set of rules that performs well 114 

across all earthquakes, and could form the basis for anticipating landslide-affected locations in a 115 

future earthquake? While patterns of landsliding in these earthquakes have been previously 116 
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established, this is to our knowledge the first attempt to extract a more general set of rules from the 117 

combined datasets. 118 

This paper is necessarily technical, addressing the question of whether it is possible to formulate 119 

such rules, identifying which rules work best and assessing their performance. We therefore expect 120 

the paper’s primary audience to be technical experts with an interest in landslide risk reduction. We 121 

have begun to explore ways of expressing these rules in a format that is more accessible to a general 122 

audience (e.g. Milledge et al., 2018). 123 

 124 

2. Potential predictors for coseismic landslide hazard: slope and upslope contributing 125 

area 126 

Local slope has been identified as an important driver of landslide occurrence in almost all landslide 127 

studies (e.g. Harp et al., 1981; Tibaldi et al., 1995; Keefer, 2000; Wang et al., 2003; Xu et al., 2012, 128 

2013; Parker et al., 2017). This is consistent with mechanistic expectations based on the balance of 129 

driving and resisting forces on an inclined failure plane (Taylor, 1937). Local slope is an intuitive 130 

parameter that is familiar to most people and can be easily estimated in relative terms (i.e., hillside 131 

A is steeper than hillside B) without specialised equipment. Shaking intensity is commonly identified 132 

as the other dominant control on coseismic landslide occurrence. However, shaking for any future 133 

earthquake cannot be predicted due to lack of certainty on source location, magnitude, rupture style, 134 

and local site effects. It is therefore difficult to incorporate into a general rule for future landslide 135 

hazard. 136 

Ridges are often considered to be areas of high coseismic landslide probability due to topographic 137 

amplification (Densmore and Hovius, 2000), while rivers are by definition areas of flow concentration 138 

into which landslides from multiple potential initiation zones may run out. Here we use upslope 139 

contributing area as a continuous estimator of the proximity to a ridgeline (defined here as an area 140 

with no upslope cells) or a valley, in order to assess how hazard may vary with position in the 141 

landscape. 142 

Other predictors have been identified in coseismic landslide studies, but these generally have a 143 

secondary effect and are not consistently identified as controls (Parker et al., 2017). Elevation and 144 

aspect in particular lack a consistent explanation or pattern as a control on coseismic landslide 145 
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hazard (Parker et al., 2017). Other common predictors are difficult to evaluate ‘on the ground’ without 146 

specialised equipment or knowledge. Soil type, rock type, or land cover may be relevant to slope 147 

stability but are difficult to identify without specialised training. Curvature is strongly dependent on 148 

the length scale over which it is measured and is extremely difficult to estimate by eye, particularly 149 

in rough natural topography. Proximity to roads is often possible to estimate in the field, but inclusion 150 

of this factor assumes that all roads are similar in their design, age and construction, and thus have 151 

similar impacts on slope stability.  152 

 153 

3. Accounting for runout in landslide hazard: reach angle and runout routing 154 

All of the potential predictors described above are linked to the probability of coseismic landslide 155 

initiation. Once triggered, however, landslide material may run out for long distances and over large 156 

areas. Thus, there are substantial portions of any landscape where landslide initiation is unlikely but 157 

where contact with a landslide is still possible – for example, at the foot of a steep hillslope. 158 

Mechanistic modelling of landslide runout is computationally intensive and strongly sensitive to initial 159 

conditions, taking it beyond the capacity of exposed communities (e.g., George and Iverson, 2014). 160 

In contrast, simple empirical approaches that have shown some predictive power fall into two 161 

categories: reach angles and runout routing. 162 

The Fahrboschung or reach angle from the crown of the landslide to the toe of its deposit has been 163 

shown to follow an exponential decrease with landslide volume (Heim, 1882; Corominas, 1996; 164 

Hunter and Fell, 2003). The reach angle concept has been incorporated into a small number of 165 

hazard maps as a way to represent the probability that a landslide will reach a given location, and 166 

can be coupled with predictions of the probability of landslide initiation (e.g. Kritikos et al., 2015). 167 

However, these complex combinations of probability are difficult to distil into a single simple rule and 168 

to our knowledge, this has not yet been done. 169 

If initiation probability is unknown and we make the conservative assumption that any cell can initiate 170 

a landslide, then the hazard at a given location becomes proportional to the area that protrudes 171 

above a cone with its apex at the location of interest and its sides inclined at a critical reach angle 172 

from the horizontal. This approach has similarities with local sloping base level (Jaboyedoff et al., 173 

2004) and excess topography metrics (Blöthe et al., 2015), which both project surfaces through the 174 
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landscape to identify less stable zones, though neither of these approaches are framed in terms of 175 

reach angles. Even this simple approach, which neglects initiation probability, is hard to distil: 1) its 176 

conceptual complexity makes it difficult to communicate; 2) its predictions depend on a reach angle 177 

parameter that is poorly constrained; and 3) the area protruding from an imaginary surface projected 178 

beneath the land surface is very difficult to estimate by eye, particularly where significant areas may 179 

be occluded from the viewpoint. An alternative metric would simply be the maximum angle from the 180 

horizontal to the skyline, which can be interpreted as the maximum (or worst-case) reach angle for 181 

that location. This metric is much simpler and thus easier to communicate and remember, can be 182 

estimated by eye, and avoids the problem of choosing a critical reach angle. 183 

Runout routing approaches assess the probability that landslide debris will reach a given location by 184 

assuming that it flows downslope and that its probability of stopping is dependent on some local 185 

property of the path along which it flows. This approach ranges in complexity from detailed physics-186 

based treatments (George and Iverson, 2014; von Ruette et al., 2016) to simple empirical rules such 187 

as the local slope or junction angle of flowpaths (Benda and Cundy, 1990; Fannin and Wise, 2001; 188 

Montgomery and Dietrich, 1994; Densmore et al., 1998). Hazard estimates are then a function of the 189 

initiation probability integrated over the upslope area and the stopping probability for each potential 190 

event. To incorporate these considerations as simply as possible, we introduce a new approach 191 

(described below) that accounts for local slope at both the locations of landslide initiation and along 192 

the flow path. While this approach does not capture the dynamic behaviour of landslide initiation or 193 

runout, we include it so that we can test the skill of such non-local approaches and the need to 194 

account for them in our simple rules. 195 

 196 

4. Earthquake inventories 197 

4.1.  1994 Mw 6.7 Northridge  198 

Topographic relief and seismicity in southern California are associated with dextral transpression at 199 

the Pacific-North America plate boundary (Montgomery, 1993). The study area lies within the 200 

western Transverse Ranges of southern California and is largely underlain by weakly cemented 201 

sedimentary rocks except for the mainly granitic and gneissic San Gabriel and Verdugo mountains 202 

and stronger sedimentary rocks in the Simi Hills (Colburn et al., 1981; Tsutsumi and Yeats, 1999; 203 
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Parise and Jibson, 2000). Estimated denudation rates for the Santa Monica and San Gabriel 204 

mountains are 0.1-1 mm/yr (Meigs et al., 1999; Lave and Burbank, 2004). The region has a warm-205 

summer Mediterranean climate (Peel et al., 2007) with monthly average temperatures ranging from 206 

1 - 18 ˚C (NOAA, 2017) and mean annual precipitation of 0.3–0.9 m (National Atlas of United States, 207 

2011). Vegetation is predominantly annual grassland, sage scrub, and chaparral with some piñon-208 

juniper, oak and pine woodlands (Griffith et al., 2016). 209 

The Mw 6.7 Northridge earthquake occurred on 17 January 1994 and ruptured 14 km of a south 210 

dipping (35°) blind thrust fault with a hypocenter at 19 km depth (Wald and Heaton, 1994, Hauksson 211 

et al., 1995). The earthquake produced recorded ground accelerations of up to 2 g (Harp and Jibson, 212 

1996) and maximum surface displacements of ~4 m. More than 11,000 landslides were triggered 213 

across a total area of ~10,000 km2 (Harp and Jibson, 1996). Landslides were mapped immediately 214 

after the earthquake using field studies and aerial reconnaissance and were manually digitized on 215 

1:24,000 scale base maps. Landslides >10 m across could be confidently identified and location 216 

errors were estimated to be <30 m (Harp and Jibson, 1996).  217 

 218 

4.2. 1993 Mw 6.9 Finisterre  219 

Oblique convergence of the Australian and Pacific plates has driven uplift of the Finisterre Mountains 220 

to an elevation of ~4 km since 3.7 Ma (Abbott et al., 1997). The Finisterre Mountains consist of 221 

volcanic and volcaniclastic rocks thrust over coarse-grained foreland deposits and capped by 222 

limestones (Davies et al., 1987; Abbott et al., 1994). Denudation rates in these mountains are up to 223 

0.3 mm/yr averaged over the time of range formation (Abbott et al., 1997). The region has a tropical 224 

climate (Peel et al., 2007), with high and stable monthly average temperatures (26-27˚C) and mean 225 

annual precipitation ranging from ~2.5 m in the west to ~4 m in the east (Hovius et al., 1998). The 226 

vegetation is predominantly tropical wet or tropical montane evergreen forest with sub-alpine 227 

grasslands on some of the higher peaks (MacKinnon 1997; Paijmans 1975). 228 

A Mw 6.9 earthquake occurred on 13 October 1993, with a hypocentre at 25 km depth, rupturing the 229 

north-dipping Ramu-Markham thrust fault to within a few hundred meters of the surface (Stevens et 230 

al., 1998). The event was followed by multiple aftershocks (5 > Mw 6) including a Mw 6.7 event on 25 231 

October 1993 with a hypocentre at a depth of 30 km. About 4,700 landslides with a total surface area 232 
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of about 55 km2 were triggered by these earthquakes and were mapped from 30 m resolution SPOT 233 

images (Meunier et al., 2007). 234 

 235 

4.3. 1999 Mw 7.6 Chi-Chi  236 

Taiwan's mountains are the product of oblique collision between the Philippine Sea plate and the 237 

Eurasian continental margin. The study area lies within the central mountains of Taiwan and is 238 

largely underlain by Neogene sediments and older metasedimentary rocks (Lin et al., 2000). 239 

Denudation rates in the central mountains of Taiwan are high, averaging 3-7 mm/yr (Dadson et al., 240 

2003). The region has a humid subtropical climate (Peel et al., 2007) with a mean annual 241 

temperature of 22˚C, a mean annual precipitation of 2.5 m and an average of four typhoons per year 242 

(Wu and Kuo, 1999). Subtropical moist broadleaf forests occupy most of the island including its 243 

mountainous interior (Olsen et al., 2001). 244 

The Mw 7.6 Chi-Chi earthquake occurred on 21 September 1999 with a hypocentre at 8–10 km 245 

depth, rupturing ~100 km of the east-dipping Chelungpu thrust fault (Shin and Teng, 2001). The 246 

earthquake produced recorded ground accelerations of up to 1 g (Lee et al., 2001) and maximum 247 

surface displacements of ~8 m (Chi et al., 2001; Shin and Teng, 2001). The earthquake triggered 248 

more than 20,000 landslides with the majority occurring across a 3,000 km2 region (Dadson et al., 249 

2004). Landslides were mapped by the Taiwan National Science and Technology Centre for Disaster 250 

Prevention from SPOT satellite images with a resolution of 20 m; landslides with areas >3,600 m2 251 

were resolved, with location errors estimated to be ~20 m (Dadson et al., 2004). 252 

 253 

4.4. 2008 Mw 7.9 Wenchuan 254 

The Longmen Shan mountain range defines the eastern margin of the Tibetan Plateau with 255 

displacement taken up mainly on oblique dextral-thrust faults (Burchfiel et al., 1995; Densmore et 256 

al., 2007). The Longmen Shan are underlain by a complex lithological assemblage comprising 257 

Proterozoic granitic massifs, a Palaeozoic passive margin sequence, a thick Triassic-Eocene 258 

foreland basin succession, and minor exposures of poorly-consolidated Cenozoic sediment 259 

(Burchfiel et al., 1995). Denudation rates are estimated at ~0.5 mm/yr over decadal to millennial 260 
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timescales (Ouimet et al., 2009; Godard et al., 2010; Liu-Zeng et al., 2011). The region has a humid 261 

subtropical climate (Peel et al., 2007), with an annual average temperature of 15-17 °C and average 262 

annual rainfall varying from ~1100 mm at the margin to ~600 mm on the plateau, of which 70%–80% 263 

falls from June to September (Liu-Zeng et al., 2011; Li et al., 2016). The natural vegetation is 264 

montane broad-leaved and conifer forest below 4000 m with alpine shrub land and steppe vegetation 265 

at higher elevations (Yu et al., 2001). 266 

The Mw 7.9 Wenchuan earthquake occurred on 12 May 2008, rupturing ~320 km of the steeply 267 

northwest-dipping Yingxiu-Beichuan and Pengguan faults (Xu et al., 2009). It had an oblique dextral-268 

thrust focal mechanism with a hypocentre at 14-19 km depth. The earthquake produced recorded 269 

ground accelerations of up to 1 g (Li et al., 2008) and maximum vertical and dextral displacements 270 

of 6.2 m and 4.5 m, respectively (Liu-Zeng et al., 2009; Gorum et al., 2011). The earthquake triggered 271 

more than 60,000 landslides across a total area of 35,000 km2 (Gorum et al., 2011; Li et al., 2014). 272 

We used a subset of the landslide inventory compiled by Li et al. (2014), who mapped landslides 273 

from high-resolution (<15 m) satellite images and air photos. The subset of 18,700 landslides (all 274 

mapped landslides east of 104 E), was chosen to avoid gaps in the 30 m resolution SRTM 275 

topographic data. Location accuracy for landslides is thought to be similar to the pixel size of the 276 

satellite images used, ~15 m (Li et al., 2014).  277 

 278 

4.5. 2010 Mw 7.0 Haiti 279 

Haiti's mountains are the product of oblique convergence between the Caribbean and North 280 

American plates (Pubellier et al., 2000). The study area is underlain by northwest-southeast oriented 281 

sub-parallel belts of igneous, metamorphic and sedimentary rocks (Sen et al., 1988, Escuder-Viruete 282 

et al., 2007). Mean elevation and relief generally increase from north to south, to a plateau at ~2500 283 

m (Gorum et al., 2013). The region has a tropical climate (Peel et al., 2007) with a mean annual 284 

temperature of 25˚C and  mean annual precipitation of ~1.2 m, with two rainy seasons per year 285 

(April-June and October-November) and hurricanes between June and November (Gorum et al., 286 

2013; Libohova et al., 2017). The study area lies predominantly within the moist broadleaf forest 287 
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biome with some pine or dry broadleaf forest (Olsen et al., 2001) but also has extensive (~50% 288 

by area) savannah, shrub or herbaceous cover (Churches et al., 2014). 289 

The Mw 7.0 Haiti earthquake occurred on 12 January 2010, with a hypocentre at 13 km depth but 290 

without any detectable surface rupture (Mercier de Lépinay et al., 2011). The complex rupture 291 

involved both the Léogâne blind thrust fault, responsible for ~80% of the seismic moment (Hayes et 292 

al., 2010) as well as deep lateral slip on the Enriquillo–Plantain Garden Fault (Hayes et al., 2010, 293 

Mercier de Lépinay et al., 2011). The earthquake triggered more than 30,000 landslides across a 294 

3,000 km2 region (Xu et al., 2014). We used an inventory of 23,679 landslides mapped by Harp et 295 

al. (2016) from publicly available satellite imagery with a resolution 0.6 m before and after the 296 

earthquake; landslides with areas >10 m2 were resolved (Harp et al., 2017).  297 

 298 

4.6. 2015 Mw 7.8 Gorkha 299 

The Himalayas are the product of active continental convergence of India and Asia, much of which 300 

is accommodated by the seismogenic Main Himalayan Thrust (Lavé and Avouac, 2000). The study 301 

area is underlain by variably metamorphosed sedimentary and igneous rocks of Proterozoic and 302 

early Paleozoic age with Paleozoic and Mesozoic sedimentary rocks and low-grade 303 

metasedimentary rocks to the north marking the southern margin of the Tibetan Plateau (Hodges et 304 

al., 1996; Searle and Godin, 2003; Craddock et al., 2007). Denudation rates in the study area range 305 

from 0.3-3 mm/yr over millennial time scales (Lupker et al., 2012; Godard et al., 2014). Mean annual 306 

temperature varies with elevation across the study area from ~18˚C in the valley bottoms to -6˚C at 307 

high elevations. Average annual rainfall is also topographically controlled, ranging from ~1 m/yr at 308 

the range front to >3 m/yr in two bands along the southern margins of the Lesser and Greater 309 

Himalaya to <0.5 m/yr on the Tibetan plateau (Bookhagen and Burbank, 2006). Natural vegetation 310 

is dominated by temperate broadleaf and coniferous forests up to 3000 m with alpine tundra above 311 

the tree line (Singh and Singh, 1987).  312 

The Mw 7.8 Gorkha earthquake occurred on 25 April 2015, rupturing ~140 km of the north-dipping 313 

Main Himalayan Thrust (Hayes et al., 2015; Elliott et al., 2016). It had a hypocentre at 8.2 km depth 314 

but did not rupture to the surface (Hayes et al., 2015). The event was followed by a series of large 315 
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aftershocks, including a Mw 7.2 event on 12 May which ruptured a portion of the Main Himalayan 316 

Thrust directly east of the 25 April rupture (Avouac et al., 2015). The earthquake triggered 317 

approximately 25,000 landslides with a total surface area of about 87 km2 (Roback et al., 2017). We 318 

used an inventory of 24,915 landslides mapped by Roback et al. (2017) from Worldview-2 319 

Worldview-3 and Pleiades imagery, with a resolution <0.5 m, before and after the earthquake.  320 

 321 

5. Methods 322 

5.1. Conditional probability 323 

Landslide hazard can be defined as the probability of being hit by a landslide in a given location 324 

and within a given time window (Lee and Jones, 2004). Here we make no distinction between 325 

consequences of being hit by landslides of different sizes or velocities, assuming that all are 326 

equally dangerous. This probability can be expressed mathematically as P(L|x,y,t), where L is the 327 

outcome of being hit by a landslide, x,y are the coordinates for a particular location and t is the time 328 

window of interest. We do not address the timing of landsliding, assuming that this is driven by the 329 

timing of an earthquake and is thus unpredictable (Geller, 1997). Instead we focus on landslide 330 

susceptibility given an earthquake that produces shaking of unknown intensity at a location (x,y), 331 

hence the notation P(L|x,y). We assume that the hazard at that location can be approximated by 332 

some location-specific characteristic (a). Thus, the landslide hazard at (x,y) is the conditional 333 

probability of being touched by a landslide given the value of the characteristic at that location, 334 

P(L|a), and can be calculated using Bayes Theorem: 335 

 336 

𝑃(𝐿|𝑎) =
𝑃(𝐿) 𝑃(𝑎|𝐿)

𝑃(𝑎)
          (1) 337 

 338 

where a is a specific characteristic of the location (e.g., the topographic slope). If we assume that 339 

the relationships between past landslides and local characteristics are good predictors of their future 340 

relationships then we can construct empirical conditional probability calculations from landslide 341 

inventories. If we grid the topography, then the Bayes equation can be easily rewritten in terms of 342 
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the numbers of grid cells, and in this form the direct equivalence of landslide conditional probability 343 

and landslide area density (e.g., Meunier et al., 2007; Dai et al., 2011; Gorum et al., 2014) is clear: 344 

 345 

𝑃(𝐿|𝑎) =
𝑁(𝑎∩𝐿) 

𝑁(𝑎)
          (2) 346 

 347 

where N(aL) is the number of cells with a given value of characteristic a that are touched by a 348 

mapped landslide, N(a) is the number of cells with the characteristic of a in the entire study area, 349 

and the study area is defined by the smallest convex hull that contains all of the observed landslides. 350 

To account for variability in the magnitude of shaking between the six study areas, we normalise the 351 

conditional probability of being hit by a landslide P(La) by the study area average probability of 352 

landsliding P(L) to generate a relative hazard. This can be shown to be directly equivalent to the 353 

‘frequency ratio’ (e.g., Lee and Pradhan, 2007; Lee and Sambath, 2006; Yilmaz, 2009; Kritikos et 354 

al., 2015): 355 

 356 

𝑃(𝐿|𝑎)

𝑃(𝐿)
=

𝑁(𝑎∩𝐿)
𝑁(𝑎)⁄  

𝑁(𝐿)
𝑁(𝑆)⁄  

=  
𝑁(𝑎∩𝐿)

𝑁(𝑎)

 𝑁(𝑆)

𝑁(𝐿)
         (3) 357 

 358 

where N(S) is the total number of cells in the study area and N(L) is the number of cells touched by 359 

landslides. Our normalised conditional probability is also directly equivalent to the ‘probability ratio’ 360 

used by Lin et al. (2008) and Meunier et al. (2008) since, from Bayes Theorem: 361 

 362 

𝑃(𝐿|𝑎)

𝑃(𝐿)
=

𝑃(𝐿) 𝑃(𝑎|𝐿)

𝑃(𝑎)𝑃(𝐿)
=

𝑃(𝑎|𝐿)

𝑃(𝑎)
         (4) 363 

 364 

We display the normalised conditional probability on a logarithmic scale for readability, resulting in a 365 

probability metric that is strongly similar to the ‘information value’ metric used in some landslide 366 

susceptibility analyses (e.g., Yin and Yan, 1988).  367 

Conditional probability analysis is advantageous for its direct link to hazard and does not require us 368 

to impose a functional form to the data. However, the results are partly dependent on bin size and 369 
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location for the predictor variable, and bins with few observations (i.e. N(a)<<N(S)) can result in noisy 370 

data that are difficult to interpret. To aid interpretation in the presence of noise, we fit cubic polynomial 371 

functions to one-dimensional conditional probability data and a logistic function to two-dimensional 372 

data. To highlight the parts of the data where we have few observations and thus where our 373 

confidence in the results is lower, in the one-dimensional case we include a single bulk PDF of the 374 

predictor variable on the x-axis below the conditional probability curve, and we limit ourselves to 375 

calculating probability only where there are more than 10 observations per bin in the two-dimensional 376 

case. Whilst other statistical approaches could be used here (e.g. Pradhan, 2013), our intention is 377 

not to find the statistical approach that provides the most powerful synthesis of the different variables, 378 

but to test the effectiveness of the variables themselves at distinguishing hazard when applied in the 379 

form of simple rules. 380 

 381 

5.2. Receiver operating characteristic curves  382 

Any simple rule for identifying more or less hazardous locations in the landscape will produce a 383 

relative measure of landslide probability. To evaluate this measure against a binary landslide map 384 

or inventory (where every cell is classified as landslide or non-landslide), it must be converted into a 385 

binary classification. A common approach to this problem is to construct a receiver operating 386 

characteristic (ROC) curve (e.g., Frattini et al., 2010). This curve quantifies both the benefit of a 387 

given classification in terms of successfully classified outcomes (landslide and non-landslide 388 

locations correctly identified, true positives and true negatives respectively) and also the cost (non-389 

landslides identified as landslides, false positives; and vice versa, false negatives). The ROC curve 390 

is constructed by thresholding a continuous variable (e.g., slope) and calculating the true positive 391 

rate as the number of true positives normalised by all positive observations, and the false positive 392 

rate as the number of false positives normalised by all negative observations. Evaluation of these 393 

rates at different threshold values results in a curve, where the 1:1 line reflects the naïve (i.e. random) 394 

case. The area under the curve (AUC) tends to 1 as the skill of the classifier improves towards 395 

perfect classification and to 0.5 as the classifier worsens towards the naïve (random) case. We 396 

calculate ROC curves for all of our chosen predictive approaches for each inventory. 397 

 398 
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5.3. Topographic analysis 399 

All of the metrics tested here are defined using topographic data in the form of digital elevation 400 

models (DEMs). We use 30 m resolution DEM data at all sites: for Northridge they are derived from 401 

the down-sampled 10 m NED elevation data (https://lta.cr.usgs.gov/NED), while for all other sites we 402 

use 1-arc sec Shuttle Radar Topography Mission (STRM) elevation data (http://srtm.csi.cgiar.org/). 403 

 404 

5.3.1. Slope and upslope contributing area 405 

We calculate local slope as the steepest path to a downslope neighbour from each cell (Travis et al., 406 

1975) because calculating slope over larger (e.g. 3x3 cell) windows for a 30 m resolution DEM results 407 

in considerable underestimation (Claessens et al., 2005). We calculate upslope contributing area 408 

using a multiple flow direction algorithm (Quinn et al., 1991) having filled pits using a flood fill 409 

algorithm (Schwanghart and Kuhn, 2010). These topographic analyses are performed in Matlab 410 

using TopoToolbox v1.06 (Schwanghart and Kuhn, 2010). 411 

 412 

5.3.2. Skyline angle analysis 413 

To capture the effect of both initiation and runout we define the skyline angle as the maximum angle 414 

from horizontal to the skyline for a given location. This is easily estimated by eye in the field and can 415 

be interpreted as the maximum (or worst-case) reach angle for that location. It is a runout-dominated 416 

metric in that it does not take into account the probability of initiation.  417 

For each cell in a study area we estimate the skyline angle by calculating vertical angles between 418 

the target cell and every other cell within a 4.5 km radius. This radius is chosen to exceed the 419 

dominant channel spacing for the study area with widest spacing (Wenchuan) and thus to fully 420 

capture the local skyline. For the Wenchuan study area the characteristic hillslope length, estimated 421 

following the method of Roering et al. (2007), is ~500 m. Thus a conservative estimate on dominant 422 

channel spacing would be ~1 km. We choose larger window size because skyline angle estimates 423 

become asymptotically insensitive to window size, so that the only constraint is run time. MATLAB 424 

code for the routine is included in the supplemental information. This approach is physically limited 425 

in at least two ways (Figure 1a). First, it does not account for the dependence of runout on the size 426 

of the initial failure or how the failure volume may increase or decrease during runout (e.g. 427 
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Corominas, 1996). Second, it does not honour flow paths. The skyline cell that generates the 428 

steepest slope to the target cell does not have to be connected to the target cell by a flowpath with 429 

monotonically decreasing elevation. However, this metric provides a measure of the gravitational 430 

potential energy available to drive runout in the vicinity of the target cell. 431 

 432 

Figure 1. Schematic view of the different topographic metrics tested here. (a), perspective view of a 433 

landscape with each cell shaded according to its local slope from light (steep) to dark (gentle). The 434 

upslope contributing area for point P is coloured blue, and the cells steeper than 39˚ that have a flow 435 

path to P that is never less than 10˚ are coloured red. (b), the same perspective view with a cone 436 

projected from point A at an angle of 34˚ so that the surface of the cone is in places tangent to but 437 

never intersects the ground surface, indicating a maximum skyline angle of 34˚ for point P. (c), cross 438 

section A-A’ through the landscape (highlighted in red on panels a and b) with dashed lines showing 439 

skyline angles at four example locations. 440 

 441 

5.3.3. Runout routing analysis 442 

To assess the importance of non-local runout paths on landslide probability, we follow the approach 443 

of Dietrich and Sitar (1997) who proposed the simplest possible debris flow runout model, requiring 444 
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only thresholds to define instability and for downslope motion to continue. This simple model, 445 

referred to as SHALRUN, was integrated with the coupled hydrologic-slope stability model 446 

SHALSTAB in an efficient parallel framework to predict landslide hazard potential in California 447 

(Bellugi et al, 2011). SHALRUN required only two field-calibrated parameters: a critical rainfall 448 

threshold to define instability, and a minimum slope threshold for downslope motion to continue. To 449 

apply this model in the context of coseismic landslides (SHALRUN-EQ) we modify the condition for 450 

landslide initiation, replacing the critical rainfall threshold with a slope threshold. We thus assume 451 

that landslide initiation and deposition are entirely dependent on the local slope of the ground surface 452 

 (i.e., landslides are more likely to initiate on steeper slopes and deposit on flatter slopes), further 453 

increasing the simplicity of the model. More formally, SHALRUN-EQ predicts the upslope hazard 454 

area Ah as the upslope area weighted by the joint probability of landslide initiation and runout. 455 

Locations with higher Ah should have higher exposure to coseismic landslide hazard than those with 456 

low (or no) Ah. Formulation of the model requires: (1) determination of the mobilisation probability at 457 

each cell i in the study area (Pmi); (2) determination of the connection probability for mobilised 458 

material from each cell i to the target cell j (Pcij); (3) convolution of (1) and (2) to get the locational 459 

hazard (Pmcij); and (4) accumulation of the locational hazard to determine a hazard area above each 460 

target cell j (Ahj). 461 

In order to generate a simple rule, our model assumes that landslide initiation and deposition are 462 

entirely dependent on the local slope of the ground surface  (i.e. landslides are more likely to initiate 463 

on steeper slopes and deposit on flatter slopes). For landslide initiation, we assume that slopes 464 

above a threshold slope θm are all equally capable of initiating a landslide with probability Pmi: 465 

 466 

𝑃𝑚𝑖 = {
1 ∶  𝜃𝑖 ≥ 𝜃𝑚 
0 ∶  𝜃𝑖 < 𝜃𝑚

          (5) 467 

 468 

where θi is the observed local slope in a downslope direction at cell i and θm is the critical slope 469 

required for landslide initiation. 470 

In order to represent a landslide hazard, mobilised material must be able to runout from the initiation 471 

point to the target cell j. This relationship is binary: either these points are connected by a viable 472 
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runout path or they are not. We assume that the flow path will follow the path of steepest descent. 473 

This path must enable continued runout for its entire length; if at any point on the flow path the 474 

material is fully deposited, then that initiation zone will be disconnected from cell j. Thus, the point 475 

along a given flow path that is most likely to cause deposition becomes the controlling location for 476 

the connection of all upslope points. Surface slope has been used to describe the probability that 477 

landslide material entering a cell will be deposited rather than continuing into the next downslope 478 

cell (e.g., Benda and Cundy, 1990; Fannin and Wise, 2001). For landslide deposition, we apply the 479 

simplest possible stopping condition, and assume that landslide run-out ceases on slopes gentler 480 

than a critical angle (θs). The probability that a landslide initiated at point i reaches point j (Pcij) can 481 

thus be expressed as: 482 

 483 

𝑃𝑐𝑖𝑗 = {
1: 𝜃𝑚𝑖𝑛𝑖𝑗 ≥ 𝜃𝑠 

0: 𝜃𝑚𝑖𝑛𝑖𝑗 < 𝜃𝑠
          (6) 484 

 485 

where θminij is the minimum slope for the flow path from cell i to cell j, and θs is the critical slope 486 

required for stopping. 487 

We combine the initiation and runout probabilities to calculate the locational hazard Pmcij as the area 488 

(ai) in cell i weighted by the probability that a landslide is both mobilised in cell i and is connected to 489 

cell j: 490 

 491 

𝑃𝑚𝑐𝑖𝑗 = 𝑎𝑖  𝑃𝑚𝑖  𝑃𝑐𝑖𝑗           (7) 492 

 493 

Assuming that 𝜃𝑠 >0, we calculate the hazard area Ahj for each target cell j by summing locational 494 

hazard in the n cells upslope of j, normalised by the unit contour length to minimise grid resolution 495 

bias: 496 

 497 

𝐴ℎ𝑗 = ∑ (
𝑎𝑖

𝑙𝑗
 𝑃𝑚𝑖  𝑃𝑐𝑖𝑗)𝑛

𝑖=1          (8) 498 

 499 
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where lj is the unit contour length at j, calculated as aj
0.5. Equation 8 is evaluated for every cell in the 500 

study area to generate a spatial grid of hazard area Ah (Figure 2). Our choice of step functions for 501 

the mobilisation (Pm) and connection (Pc) probabilities allows us to interpret Ah as the upslope area 502 

per unit contour width with local slope steeper than θm from which a landslide will reach the cell of 503 

interest by moving downslope along a path that is always steeper than θs. Alternative formulations 504 

could be used for Pm and Pc but these would result in a less intuitive index that would be difficult to 505 

implement as a simple rule. 506 

 507 

There is implicit resolution dependence to the stopping condition s since it assumes that the low 508 

gradient area is long enough (in terms of flow path length) that the landslide will stop. Similarly, there 509 

is resolution dependence to the initiating condition m as topographic surfaces will be more or less 510 

smooth, depending on the resolution of the DEM (Classens et al., 2005). Also, the initiation 511 

probability is based on local slope alone and so does not account for any of the other possible drivers 512 

of coseismic landslide initiation, such as topographic amplification (Meunier et al., 2008), or pore 513 

water pressure (e.g., Xu et al., 2012). While many more complex models exist that account for 514 

initiation volumes and flow dynamics (e.g., George and Iverson, 2014; von Ruette et al., 2016), we 515 

seek the simplest possible model that captures the effects of drainage networks in accumulating 516 

hazard, of steep slopes in landslide initiation, and of gentle slopes in landslide deposition. 517 

The model has two parameters (θm and θs), both of which are effective rather than measurable. We 518 

first optimise the model for each inventory to establish its performance under the best possible 519 

scenario, where the model is fitted to the data. We then test the model using the average of the 520 

optimised parameters from the six inventories to represent a more realistic application where these 521 

parameters must be estimated from previous events. Thus, the values of m and s should not be 522 

interpreted as mechanistic thresholds, but rather as the result of an optimization that also depends 523 

on the DEM resolution. 524 
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 525 

Figure 2. Worked example of SHALRUN-EQ hazard area calculations for an initiation angle of 39˚ 526 

and a stopping angle of 10˚. a), elevations from a 30 m resolution digital elevation model for an area 527 

of topographic convergence. Lines show steepest flowpaths from cell to cell. b), local slope 528 

calculated as the steepest path to a downslope neighbour. Thick outlines show cells steeper than 529 

38˚. c), upslope contributing area using steepest flow path routing. d), upslope contributing area 530 

steeper than 38˚. e), hazard area, defined as the upslope area steeper than 38˚ with flow paths that 531 

do not fall below 10˚. 532 

  533 
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6. Results 534 

6.1. Local slope 535 

For all inventories, landslide probability increases as an approximately exponential function of local 536 

slope (Figure 3a). For four of the six inventories, conditional probability exceeds the study area 537 

average probability for slopes steeper than 30-35˚, with Northridge and Haiti lower at 20˚ and 25˚. 538 

This suggests that slopes <30˚ are generally safer than average, while those >45˚ have a landslide 539 

probability >200% of the average, and those >50˚ are generally >300% of the average. The curves 540 

for Finisterre, Chi-Chi and Gorkha largely collapse on each other when normalised by study-area 541 

average probability (Figure 3a). However, landslide hazard is less sensitive to slope for Wenchuan 542 

and more sensitive for Northridge and Haiti. This variability between inventories likely reflects specific 543 

study area properties such as the more dissected topography within the Northridge and Haiti study 544 

areas. Comparing the amalgamated PDF of study area slopes (Figure 3a) with the conditional 545 

probability curves indicates that the majority of the landslide hazard burden is held by the minority of 546 

each study area (slopes >35˚). This implies that 1) many of the modest (<15˚) slopes on which people 547 

generally choose to live are exposed to relatively low hazard (less than half the study area average 548 

for all but Wenchuan); and 2) any choice to spend time or build infrastructure on steeper slopes 549 

should recognise the considerable associated increase in exposure to coseismic landslide hazard.  550 

 551 

6.2. Upslope contributing area 552 

For all inventories, landslide probability increases from below the study area average at the lowest 553 

upslope contributing areas – that is, ridge tops – to a peak or plateau at intermediate upslope 554 

contributing areas, from which it declines in four of the six inventories (Figure 3b). Locations with the 555 

lowest upslope contributing area also have the lowest landslide probability for four of the six 556 

inventories, with Northridge and Finisterre as exceptions. For Northridge, the zone of lower than 557 

average landslide probability extends only to upslope contributing areas ~40 m2/m; for Finisterre it 558 

extends to ~100 m2/m, for Chi-Chi and Haiti to ~150 m2/m and for Wenchuan and Nepal to ~200 559 

m2/m. The location of peak landslide probability broadly coincides with the inflection in average slope 560 

for a given upslope contributing area (Figure 4). This inflexion is commonly used as an indicator of 561 

the transition from hillslopes to rivers (Montgomery and Foufoula-Georgiou, 1993; Stock and 562 
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Dietrich, 2006; Hancock and Evans, 2006), suggesting that maximum (or near maximum) landslide 563 

probability occurs at the transition from hillslopes to channels (Figure 3b). Landslide probability 564 

decreases with increasing upslope contributing area beyond this transition point for four of the six 565 

inventories, gently for Finisterre and Chi-Chi, more steeply for Northridge and Haiti, and in all cases 566 

with an increase in scatter that is likely due to the small number of observations with upslope 567 

contributing area >1000 m2/m.  568 

 569 

Figure 3. Landslide hazard defined as conditional probability P(L|x) normalised by study area 570 

average landslide probability P(L), where x is a) local slope and b) upslope contributing area per unit 571 

contour length. Red bars show histograms of each variable over the six inventories. Note logarithmic 572 

y-axes and different y-axis scales in panels a and b. The solid black lines show a normalised 573 

probability of 1, equivalent to the study area average; thus, points above the solid black line have 574 

conditional probability greater than the study area average. Legend includes study area average 575 

landslide probabilities for each inventory (in brackets). 576 

 577 

6.3. Local slope and upslope contributing area combined 578 

When slope and upslope contributing area are examined in combination, the highest landslide 579 

probability is consistently found at the highest upslope contributing area for a given slope or the 580 

highest slope for a given upslope contributing area (Figure 4). The lowest probabilities are found at 581 

locations with both low slope and upslope contributing area, and cells with very low slopes have low 582 
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landslide probability almost independently of upslope contributing area. Importantly, landslide 583 

probability increases more steeply with increasing slope than with increasing upslope contributing 584 

area, indicating the dominance of local slope in setting landslide probability. This dominance is also 585 

reflected in the orientation of the probability contours derived from logistic regression. There is 586 

variability in contour orientations between inventories, with Finisterre and Northridge showing the 587 

strongest slope dependence and Wenchuan showing the strongest upslope contributing area 588 

dependence (Figure 4).  589 

 590 

The shape of the two-dimensional probability surface determines the best course of action in terms 591 

of choosing alternative locations for a particular asset or activity, but such action is also constrained 592 

by what is possible. The average slope for each upslope contributing area (dashed line in Figure 4) 593 

indicates that for Northridge, Finisterre, Chichi and Haiti there are rarely situations where a reduction 594 

in upslope contributing area will not involve (on average) an increase in slope, that will actually 595 

increase landslide probability. However, for locations in Wenchuan and Gorkha with upslope 596 

contributing area of 300 to 10,000 m2/m, the probability reduction due to reducing upslope 597 

contributing area is not offset by the associated increase in slope. This suggests that, for the former 598 

inventories, it is always beneficial to decrease slope even at the expense of upslope contributing 599 

area, while for the latter it is more dependent on initial location. In general, the average slope contour 600 

appears to separate higher and lower than average landslide probability in slope-upslope 601 

contributing area space, suggesting that higher than average landslide probability is always found 602 

on higher than average slopes for a given upslope contributing area. 603 

  604 
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 605 

Figure 4. Two-dimensional plots of landslide hazard, defined as conditional landslide probability 606 

P(L|s,a) normalised by study area average landslide probability P(L), where s is local slope and a is 607 

upslope contributing area per unit contour length. Dashed lines show the mean slope per upslope 608 

contributing area bin using 100 logarithmically-spaced bins. Solid lines are relative hazard contours 609 

from logistic regression in the same units as the relative hazard surface. Grey cells indicate slope-610 

area pairs with data but with no cells touching a landslide. Note that upslope contributing area is 611 

shown on a logarithmic axis, so that maintaining a constant landslide probability for a given increase 612 

in slope requires a larger reduction in upslope contributing area at low slopes than at high slopes. 613 

  614 
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6.4. Skyline angle 615 

Landslide probability increases as an approximately exponential function of maximum skyline angle 616 

(Figure 5a) as it does for local slope (Figure 3a). Landslide probability exceeds the study area 617 

average probability at skyline angles of 27-28˚ for Northridge and Haiti, 34˚ for Wenchuan and 38-618 

40˚ for Finisterre, Chi-Chi and Gorkha. Locations with skyline angles of <20˚ have less than half the 619 

study area average landslide probability for all inventories, while those with skyline angles of >50˚ 620 

have more than double the study area average probability (Figure 5a). The lowest landslide 621 

probability values, at skyline angles of less than 10˚, are lower than those for local slope or upslope 622 

contributing area. As with local slope, the curves for several of the inventories (Finisterre, Chi-Chi 623 

and Wenchuan) collapse to a similar relationship when normalised by study area average probability 624 

suggesting similar behaviour across a range of different landscapes. However, Northrige and Haiti 625 

show stronger sensitivity to skyline angle and Gorkha shows considerably reduced landslide 626 

probability at low skyline angles relative to the other inventories.  627 

 628 

6.5. Hazard area  629 

The ability of hazard area Ah to distinguish landslide from non-landslide cells is highly sensitive to 630 

two tuneable parameters (θm and θs) but follows a smooth optimisation surface with a unique 631 

optimum for each inventory (Figure S1). Optimum parameters vary between inventories, with 632 

optimum initiation slopes m ranging from 36˚ to 40˚ and stopping slopes s from 6˚ to 31˚ (Table S1). 633 

Since these optimum parameters vary between inventories and can only be identified after an 634 

earthquake, they are problematic in terms of incorporation into a rule. Instead, we use the global 635 

average of the optimised parameter values from the six inventories (m = 39˚ and s 10˚). The 636 

stopping angle of 10˚ is steeper than many, though not all, of the observed slopes on which debris 637 

flows stop. For example, Stock and Dietrich (2003) report that debris-flow generally exhibit stopping 638 

angles of 2-6˚, but may halt at much larger angles (13-22˚) on open slopes. The steeper angles 639 

reported here, may reflect differences in the method and resolution of slope calculation but likely 640 

result from the coseismic trigger which does not necessitate high levels of saturation in the initial 641 

failure. Conditional probabilities are very low for cells with Ah = 0 (i.e., where no cells steeper than 642 
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the initiation angle runout over flowpaths steeper than the stopping angle), ranging from 2% to 15% 643 

of the study area average (Figure 5b). Conditional probability increases with Ah for all inventories but 644 

only slowly for Ah < 1 m2/m; the trend then steepens to a peak (Northridge, Haiti, Nepal) or plateau 645 

(Finisterre, Chichi, Wenchuan) at Ah values of 100 to 1000 m2/m with conditional probabilities 200 - 646 

800% of the study area average (Figure 5b).  647 

 648 

Figure 5. Landslide hazard defined as conditional landslide probability P(L|x) normalised by study 649 

area average landslide probability P(L), for a) skyline angle; and b) hazard area with average 650 

parameters - that is, the areas with slope greater than 39˚ that have a flow path to the cell of interest 651 

and do not travel across a cell with a slope less than 10˚. Red bars show histograms of each variable 652 

over the six inventories. Coloured circles on the y-axis in (b) indicate conditional probabilities for cells 653 

with a hazard area of 0 m2/m. Note logarithmic y-axes and different y-axis scales in panels a and b. 654 

The solid black lines show a normalised probability of 1, equivalent to the study area average; thus, 655 

points above the solid black line have conditional probability greater than the study area average. 656 

 657 

6.6. ROC analysis 658 

To supplement conditional probability analysis, we examine the performance of slope, upslope 659 

contributing area, skyline angle, and hazard area as continuous hazard indices (with high index 660 

values reflecting high hazard and vice versa) using ROC curves (Figure 6). Successful indices will 661 

capture landslide cells within high hazard index zones (true positives) without capturing non-662 
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landslide cells in the same zones (false positives). Hazard area performs best for all six inventories 663 

with an AUC always above 0.78 and an average AUC of 0.83 (Table 1). Skyline angle performs joint 664 

best for Haiti and second best for a further three of the six inventories, with AUC always above 0.65 665 

and an average AUC of 0.77. The exceptions, where slope, upslope area, or their combination 666 

performs second best are Northridge and Wenchuan. For Northridge slope alone and slope plus  667 

upslope contributing area both outperform skyline angle by a single percentage point, while upslope 668 

contributing area by itself performs considerably worse (Figure 6a). For Wenchuan, upslope 669 

contributing area considerably outperforms the other indices, perhaps reflecting longer-runout 670 

landslides in this inventory, while slope performs particularly poorly (Figure 6d). Although slope, 671 

upslope contributing area, and their combination all perform better than skyline angle in one of the 672 

inventories. none do so consistently across multiple inventories. This is reflected in their averaged 673 

AUC values over all inventories of 0.72, 0.72 and 0.73 for slope, upslope contributing area, and their 674 

combination respectively. 675 

 676 

Table 1. Area under the ROC curve for the five hazard metrics over the six coseismic landslide 677 

inventories. The best performing metric for each inventory is in bold, the second best is in italics. 678 

  

Hazard 

area 

Skyline 

angle 

Slope + upslope 

contributing area 

Local 

slope 

Upslope 

contributing area 

Finisterre 0.79 0.72 0.69 0.69 0.66 

Northridge 0.89 0.83 0.84 0.84 0.62 

Chi-Chi 0.80 0.73 0.68 0.67 0.69 

Wenchuan 0.78 0.65 0.62 0.58 0.74 

Haiti 0.86 0.85 0.83 0.79 0.69 

Gorkha 0.88 0.85 0.77 0.73 0.76 

Average 0.83 0.77 0.74 0.72 0.69 

1σ 0.05 0.08 0.09 0.09 0.05 

  679 
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 680 

 681 

Figure 6. Receiver operating characteristic (ROC) curves for the six inventories: a) Finisterre, b) 682 

Northridge, c) Chi-Chi, d) Wenchuan, e) Haiti, f) Gorkha. False positive rate is given by the number 683 

of false positives divided by the sum of false positives and true negatives. True positive rate is given 684 

by the number of true positives divided by the sum of true positives and false negatives. The 1:1 line 685 

represents the naïve (random) case. Curves plotting closer to the top left corner of each panel 686 

represent better model performance. 687 

 688 

7. Discussion 689 

We structure the discussion around three simple rules that are drawn from the results above. In each 690 

case we explain the evidence on which the message is based, why it works, our degree of 691 

confidence, and implications for applying the rule. Finally, we examine the spatial implications of 692 

these rules using an example landscape. 693 

7.1. Rule 1: avoid steep (>10˚) channels with many steep (>39˚) areas that are 694 

upslope 695 

The hazard area is the best or joint best predictor of landslide probability for all six inventories. The 696 

hazard area defined by the average initiation angle (39°) and stopping angle (10°) across all six 697 

inventories performs nearly as well as the optimised area for each inventory, enabling us to define a 698 
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general rule independent of any specific inventory. This is fortunate, as site-specific optimisation 699 

requires a pre-existing landslide inventory for any individual area and so may not be feasible. In all 700 

six inventories, locations with Ah > 60 m2/m have landslide probability above the study area average. 701 

While landslide probability generally increases with increasing hazard area, the relationship is 702 

complex (Figure 6). Landslide hazard can be most effectively decreased by decreasing Ah at 703 

intermediate values of Ah, whereas decreasing Ah at either the upper or lower extremes has minimal 704 

effect on hazard. The qualitative statement to avoid areas with ‘many’ steep slopes could also be 705 

phrased ‘any’ steep slopes since the landslide probability is generally 5-10 times higher even for 706 

very small values of Ah (c. 0.1 m2/m) than the landslide probability for areas with no Ah.  707 

Landslides do not always obey steepest flow path routing rules, and it is possible for landslides to 708 

travel up reverse slopes or along contours. This is particularly true for large deep-seated landslides 709 

or rockfalls. The hazard area metric cannot account for such behaviour and thus is more likely to 710 

reflect hazard from smaller shallow landslides, while skyline angle, which does allow for runout over 711 

reverse slopes, may be a better predictor for larger deep-seated landslides. The two indices have 712 

some overlap but could be used in combination to find safer locations in the landscape. 713 

 714 

7.2. Minimise your maximum angle to the skyline  715 

The maximum skyline angle is the second-best predictor of landslide probability in four of the six 716 

cases. Locations with skyline angles less than 30˚ generally have a landslide probability below the 717 

study area average. Importantly, landslide probability increases non-linearly with skyline angle, so 718 

that a slight reduction to a high skyline angle results in a much larger reduction in landslide probability 719 

than it would for a lower skyline angle. 720 

The distinction between local slope and skyline angle reflects the importance of runout as well as 721 

initiation in defining landslide hazard. Landslide hazard is an inherently non-local problem, defined 722 

by both conditions at the point of interest and those upslope of that point. The skyline angle is a 723 

simple way to represent this. It has the additional advantage of being easy to measure, needing only 724 

a protractor or clinometer for precise measurement in the field, and being easily approximated by 725 

eye. Local slope, in contrast, is scale-dependent, while upslope contributing area and Ah are both 726 

considerably more difficult to estimate in the field. 727 
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 728 

7.3. Minimise local slope, especially on steep slopes, and even at the expense of 729 

increasing upslope contributing area, but not at the expense of increasing skyline 730 

angle or hazard area 731 

Local slope generally performs less well than skyline angle or hazard area but is a consistently skilful 732 

predictor of coseismic landslide hazard, and could be a useful additional discriminant for situations 733 

where both skyline angle and hazard area are comparable between two locations. In this situation, 734 

our results suggest choosing the location with the lower local slope. This is particularly true at steeper 735 

slopes since landslide probability increases exponentially with slope, approximately doubling for 736 

every 10˚ increase in slope.  737 

Given the common observation that coseismic landslides initiate near ridge crests (Densmore and 738 

Hovius, 2000; Meunier et al., 2007), it is perhaps surprising that landslide hazard generally increases 739 

with increasing upslope contributing area (i.e. moving downslope from ridge crests). In fact, while 740 

coseismic landslides may initiate preferentially near the ridges, they runout downslope; thus, areas 741 

near ridges are less likely to be touched by any part of a landslide even though they are more likely 742 

than other parts of the landscape to contain a landslide crest. Landslide probability is consistently 743 

low at very low values of upslope contributing area, corresponding to ridges; for some inventories, it 744 

is also low at very high values of upslope contributing area, corresponding to valley floors in the 745 

downstream reaches of the river network. This may be partly a function of the covariance between 746 

local slope and area, since locations with large upslope contributing areas generally have lower 747 

slopes (see dashed lines in Figure 4). The addition of upslope contributing area as a predictor in 748 

logistic regression improves landslide probability prediction relative to slope alone (Table 1), but the 749 

orientation of the probability contours (Figure 4) indicates that its influence is weak. Moving to a 750 

location with lower slope angle almost always reduces landslide probability independently of the 751 

upslope contributing area of the new location, although the specific reduction of landslide probability 752 

depends on the shape of the two-dimensional probability surface (Figure 4). We conclude that 753 

decisions on how to reduce landslide hazard most effectively need to be made on a case by case 754 

basis, and are best made using hazard area, skyline angle, and the local slope in conjunction with 755 

each other. Steep upslope areas result in elevated hazard but gentle upslope areas do not, 756 
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explaining the improved performance of hazard area relative to upslope contributing area (Figure 6 757 

and Table 1). Ridges, with very low upslope contributing area, are generally low hazard locations if 758 

they have gentle local slope but can still be hazardous if they are steep (Figure 4). To minimise 759 

landslide hazard, it is thus preferable to seek broad ridges over sharp ridges where such a choice is 760 

possible.  761 

 762 

7.4. Movement rules in a landscape with variable hazard 763 

While this analysis is focused on cell-by-cell hazard assessment, and is thus appropriate for 764 

decision-making before a large earthquake, it is also possible to use the results to define some rules 765 

for movement or relocation during or immediately after an earthquake. Our analysis shows that even 766 

during a large earthquake in mountainous terrain, landslide hazard is not ubiquitously high. A 767 

significant fraction of the landscape has low landslide probability (<5% of the study area average) – 768 

as much as 30% in Northridge and 33% in Nepal. This means that it is often possible to find locations 769 

with lower landslide hazard. Landslide hazard is extremely granular in spatial terms, so that small 770 

changes in location can make a big difference to exposure. The vast majority of locations (75% in 771 

Nepal, 95% in Northridge) are within 1 km of areas of low landslide probability (<5% of the study 772 

area average). Even smaller movements of 100 m or less, as might be possible during or immediately 773 

after a large earthquake, can result in very large reductions in hazard.  774 

Detailed analysis in the Northridge (Figure 7) and Nepal inventories shows that landslide hazard can 775 

often be effectively reduced by moving from a slope to a ridge (e.g., from A to B in Figure 7), out of 776 

a gully (e.g., from C to D), or downstream of a flatter area (e.g., from C to E). However, there is no 777 

single answer to the question of where to move to reduce coseismic landslide hazard, since this 778 

differs depending on the setting, the distance that can be travelled due to time or location constraints, 779 

and on the chosen rule (e.g., skyline angle vs. hazard area). Given a 1 km radius of potential 780 

movement, minimizing skyline angle involves moving upslope for ~75% of locations in Nepal but 781 

only ~66% in Northridge. In some cases, knowing how far one can travel can be critical: if one may 782 

only travel a short distance, moving upslope may be preferable (e.g., from C to D in Figure 7), while 783 

if one could travel farther, moving downslope may offer greater hazard reduction (e.g., from C to F 784 

or G). 785 
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Landslide probability estimates for high hazard locations are broadly comparable between skyline 786 

angle and hazard area metrics (e.g. Figure 7). However, different metrics emphasise different parts 787 

of the landscape. Ridges consistently minimise skyline angle but may still have intermediate values 788 

of hazard area if the ridge is sharp so that the local slope of the ridge itself is steep. Broad valley 789 

floors consistently minimise hazard area, but may still have intermediate values of skyline angle if 790 

the neighbouring slopes have sufficient relief. There are trade-offs between these metrics, and 791 

further work is needed into how they might be combined to further reduce hazard. 792 

 793 

Figure 7. Example landslide hazard estimates derived from a) skyline angle and b) hazard area for 794 

a small section of the Northridge study area. Colours reflect landslide hazard estimated from the 795 

two methods, expressed as a fraction of the study area average hazard. Points labelled A-G in 796 

white are example locations discussed in Section 7.4. Hazard estimates are overlain on shaded 797 

relief from a 0.5 m resolution LiDAR DEM for context (source: NCALM, 2015, 798 

DOI:10.5069/G9TB14V2). 799 

 800 

7.5 Caveats 801 

These rules should be combined with existing guidance, such as local knowledge and formal hazard 802 

and risk information when that is available. The rules provide an evidence base that could be used, 803 

for example, in infrastructure and land-use planning, identifying evacuation routes, and designing 804 

contingency plans from individual to community level, where more detailed or formal technical advice 805 

is not available. It is also important to note some caveats.  806 
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This analysis is purely focussed on coseismic landslide hazard, and thus it does not take into account 807 

the distribution of vulnerability: that is, the locations of people and infrastructure in these landscapes 808 

or how they might be differentially impacted by landslides. While one area may be more hazardous 809 

than another, the distribution of people and infrastructure may be such that risk is not actually 810 

increased. Further, our analysis is probabilistic, defining hazard as the probability of intersecting a 811 

landslide; thus, our rules identify locations where the landslide probability is lower, not where 812 

probability is zero. This means that it is possible for an alternate location chosen based on its lower 813 

landslide probability to be impacted by a landslide while the original higher-probability location is not. 814 

The choice of inventory will influence the specific results and, although we adjust for bulk shaking 815 

intensity by normalising conditional probability by bulk probability, differences between inventories 816 

are likely to remain (e.g., in spatial patterns of shaking intensity and their relation to topography). 817 

Rock type is a critical influence on landslide occurrence (Chen et al., 2012; Harp et al., 2016; Roback 818 

et al., 2018), but we have excluded it from our analysis because it is extremely difficult for an 819 

untrained observer to identify and to translate into meaningful estimates of material strength and 820 

thus landslide probability. While rock type is likely to influence the relationship between topography 821 

and landslide hazard (e.g., Chen et al., 2012) we expect the length scales over which this occurs to 822 

be long (order kilometres) relative to the other factors examined here.  823 

Because the analysis is focussed on coseismic landslide hazard, it does not account for other 824 

sources of hazard, either associated with an earthquake (e.g., seismic amplification on ridges), or 825 

with other processes or events such as flooding. In some cases, following our rules in isolation might 826 

increase exposure to other hazards. For example, moving to ridge tops to minimise skyline angle 827 

might increase exposure to intense shaking due to seismic amplification; moving to valley floors that 828 

are occupied by large rivers, where hazard area is minimal, might increase exposure to fluvial 829 

flooding. We also have not considered the effects of landslide size or failure type, choosing instead 830 

to treat all landslides as representing an equivalent hazard. If landslide size or type shows a strong 831 

spatial dependence, then parts of the landscape may be preferentially impacted in ways that are not 832 

reflected by our rules. Finally, it is not yet clear how transferrable our conditional probability results 833 

are to rainfall-triggered landslides. For instance, stopping angles are likely to be lower for rainfall-834 

triggered landslides where the failing mass is more highly saturated (e.g. Stock and Dietrich, 2003). 835 
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Similarly, in the case of rainfall-triggered landslides, initiation is likely to depend not only on slope 836 

angle but also topographic control on saturation (e.g. Bellugi et al., 2011). Extending the analysis to 837 

other triggering mechanisms is thus a future research need. 838 

 839 

8. Conclusions 840 

We have introduced a set of simple rules that can be used to identify, and thus potentially reduce, 841 

exposure to earthquake-triggered landslides. We test a set of candidate predictors for their ability to 842 

reproduce mapped landslide distributions from six recent earthquakes. Landslide hazard, defined as 843 

the conditional probability of intersecting a landslide in one of the six earthquakes, increases 844 

exponentially with local slope. Landslide hazard on hillslopes also increases with upslope 845 

contributing area, suggesting that while ridges may be areas of preferential coseismic landslide 846 

initiation, they are not the locations of highest coseismic landslide hazard due to downslope 847 

movement of landslide material during runout. When accounting for both slope and upslope 848 

contributing area, landslide hazard is highest for the highest area at a given slope or the highest 849 

slope at a given area. Landslide hazard can be reduced by reducing local slope, even at the cost of 850 

increased upslope contributing area, and especially at high slopes. Landslide hazard increases 851 

exponentially with the skyline angle, and this simple, easily-measured, metric performs better than 852 

slope or upslope contributing area for four of the six inventories. Hazard area, which accounts for 853 

both landslide initiation and runout, offers the best predictive skill for all six inventories but is more 854 

difficult to estimate in the field and requires estimation of two empirical parameters. Fortunately, 855 

hazard area calculated with parameters that are averaged across all six study sites (initiation angle 856 

of 39˚ and stopping angle of 10˚) performs only slightly worse than hazard area calculated with 857 

optimised site-specific parameters, suggesting that the average parameters can be applied to other 858 

inventories. These findings can be distilled into three simple rules: 859 

1) Avoid steep (>10˚) channels with many steep (>39˚) areas that are upslope;  860 

2) Minimise your maximum angle to the skyline; and 861 

3) Minimise local slope, especially on steep slopes and even at the expense of increasing 862 

upslope contributing area, but not at the expense of increasing skyline angle or hazard area. 863 

 864 
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